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Cationic complexes of Rh(l) figure prominently in the field of ~ Scheme 1. The Synthesis of Compounds 1—42

homogeneous catalysis, as they are capable of mediating substrate _< £
transformations that are often difficult to achieve by use of neutral HoH y P,L \Rh/ -
catalysts. In particular, cationic Rh(l) complexes supported by % /0 % /) CI/ AR
hemilabile phosphine-amine (P,N) bidentate ligands have attracted O’ N 00 NT T H, P\(
considerable attentioh® These species often exhibit reactivity Y 1 N
properties that are superior to the corresponding diphosphine and " ! |

2a (cod)

diamine complexes.4 Unfortunately, the polar nature of Rh(l) salts
can necessitate the use of high-dielectric reaction media, possibly
leading to attenuated catalytic activity resulting from unfavorable
competition between substrate molecules and the counteranion or

2b (nbd)

solvent for the metal active site. The use of charge-neutral 7, 7

zwitterionic complexes represents a means of circumventing such ° ¥ o W) 533 N/ GBFA
problems® Zwitterionic Rh(l) complexes have been shown to N, N saeon)
catalyze a wide range of reactions under mild conditions and with H H H 3b (nbd)

high selectivityé To date, the construction of Rh(l) zwitterions has
relied almost exclusively on borato-type ligaridmd, surprisingly,
while both “N,N” and “P,P” bidentate zwitterions of Rh(l) have
been explored, the corresponding “P,N” zwitterions are unknown.

In the pursuit of new and synthetically useful metal-mediated
reaction chemistry, we sought to prepare alternative classes of
platinum-group zwitterions that do not rely on borate ligation. In
this context, we envisaged that the incorporation of an extended
Huckel aromatic carbanion within the periphery of an ancillary
ligand might provide an efficient means of inducing formal charge
separation. Although main group functionalized indenyl compounds
have been widely used as carbocyectidigands, the sequestering
of an anionic charge in the form of a Iindenide unit built into
the backbone of a bidentate ligand has thus far been overldoked. Figure 1.  The crystallographically determined structure3bf shown with
Herein we report that this unusual new ligation strategy provides ggré’a?ésgﬁgeg;”tci'ﬂﬁfgg? Sﬁ:\’/‘;tege'g]drggft?e?ﬂrgf'C"i‘:r;’t‘;e" g;teh;erHF
access to the first charge-neutraf-P,N]JRh(l) zwitterion, 4, a interatomic _distances (A): RHP 2.2798(7); RRN 2.179(2);' PC3
complex that functions as a catalyst for the dehydrogenative 1.806(3); N-C2 1.455(3); C+-C2 1.509(4); C2C3 1.346(4); C3-C3a
coupling of C-H and Si~H fragments. 1.477(4); C3aC7a 1.404(4); CC7a 1.499(4).

The new indene-supported P,N ligaddcan be prepared in 93% Chloride abstraction (AgR§ from rhodium in either2a or 2b
yield via Iow-temperature_ lithiation of 2-dimethylaminoindene, generates the cationic chelate compleBasand3b, respectively,
followed by the addition ofP,PCI (Scheme 1). The formulation ., \which the indenyl framework has undergone a structural
of 1 as the allylic (C1) rather than the vinylic (C3) isomer is  e5rrangement that places thnP fragment at the C3 position.
consistent with data obtained from NMR spectroscopic stuies. e crystallographically determined structure3if is shown in
Treatment ofl with 0.5 equiv of either [CODRhCGJ(COD = 1,5- Figure Pcand is comparable to othekftP,N)Rh(olefin)] X ~ salts
cyclooctadiene) or [NBDRhC]] (NBD 2,5-norbornadiene) reported in the literaturé
produces the corresponding mononuclear phosphine compes, In contrast, the alkane-soluble zwitterionic Rh(l) spectess
and2b, respectively. These and the other Rh(1) species depicted in ithout precedent. This novel complex can be cleanly generated
Scheme 1 are formed quantitatively (based A NMR data  gjther by deprotonation o8a or via lithiation of 1 followed by
obtained from the crude reaction mixtures), and in all cases the {.aatment with 0.5 equiv of [CODRGI] The preference of the

desired complexes can be isolated as analytically pure solids injcopRrht] fragment in4 to coordinate at the P,N site rather than
high yield. An X-ray crystallographic study da confirms that binding in an#S-fashion to the indenyl ring is highly unusual,

the coordinated indenyl ligandl) is bound exclusively through especially in light of the numerous;%indenyl)Rh(olefiny com-

aReagents: (i)n-BuLi, CIPPr; (ii) 0.5[L,RhCI;, L, = COD, 2g;
or NBD, 2b; (iii) AgBF4 (iv) using 3a, NaNTMS; (v) n-Buli,
0.5[CODRhNCI}.

the phosphorus donék.
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plexes that are knowH. The crystallographically determined
structure of4 is shown in Figure 29 Particularly striking are the
differences between the interatomic distances within theirg

10.1021/ja034543v CCC: $25.00 © 2003 American Chemical Society
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characteristics brought about by this new ligand set will engender
reactivity in a variety of late transition metal fragments.
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Figure 2. The crystallographically determined structuredpshown with characterization data fd—4 including tabulated crystallographic data
40% displacement ellipsoids. Nonindenide hydrogen atoms have beenfor 2g, 3b, and4 (PDF), as well as X-ray crystallographic information
omitted for clarity. Selected interatomic distances (A): %h2.3173(6); files (CIF) for 2a, 3b, and4. This material is available free of charge
Rh—N 2.242(2); P-C3 1.758(2); N-C2 1.479(3); C+C2 1.386(3); C2- via the Internet at http://pubs.acs.org.
C3 1.419(3); C3-C3a 1.446(3); C3aC7a 1.442(4); C:C7a 1.430(4).
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